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Abstract

Lagrangian support vector machine (LSVM) cannot solve large problems fornonlinear kernel classifiers. In order to ex-

tend the LSVM to solve very hrge problems, an extended Lagrangian support vector machine (ELSVM) for classifications based on

LSVM and SVM'"is presented in this paper. Our idea for the ELSVM is to divide a large quadratic prog ramming problem into a series

of subproblems with small size and to solve them via LSVM. Since the LSVM can solve smal and medium problems for nonlinear kemel

classifiers, the proposed ELSVM can be used to handle large problems very efficiently. Numerical experiments on different types of prob-

lem s are performed to demonstrate the high efficiency of the ELSVM.
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Training a support vector machine (SVM) is e-
quivalent to solving a linearly constrained quadratic
programming (QP) problem with a number of vari-
ables equal to the number of data points. This opti-
mization problem is known to be challenging when
the number of data points exceeds a few thousand.
Decomposition algorithms are currently the major
methods for solving support vector machines. An im-
portant issue in the solution process is the selection of
the working set, and another one is solving the

quadratic programming problem.

In the previous works Osuna et al. H presented
a decomposition algorithm and transformed the origi-
nal quadratic programming into a series of quadratic
programming subproblems. From the view of select-

[2]

ing the working set, Joachims = proposed an imple-

mentation of the decom position algorithm based on O-
suna’ s idea, which is called SVM ™", Platd 7 has al-
so given a sequential minimal optimization (SMO) al-
gorithm that breaks the large QP problems into a se-
ries of smallest possible QP subproblems, which can
be solved analytically. Keerthi et al.'¥ suggested
some improvements to Platt” s SMO algorithm for
SVM classifier design. In order to improve the speed

quadratic programming, support vector machine decomposition algorithm LSVM, ELSVM.

of SVM training without sacrificing the generality
performance, Yang et al.l” presented a preprocessing
method based on the set segmentation and k-means
clustering. As for the convergence of the decomposi-
tion algorithm for support vector machines, Lin' *7

has given the proofs in detail.

In the decomposition algorithms mentioned
above, the matrix that appeared in the dual objective
function is not positive definite in general. In order to
overcome this difficulty, Mangasarian et al.'¥ pro-

posed the Lagrangian support vector machine
(LSVM). For a positive semidefinite nonlinear ker-
nel, a single matrix inversion is required in the space
of dimension equal to the number of data points classi-
the LSVM cannot handle very large

nonlinear classification problems efficiently. In this

fied. Hence,

papes in order to speed up the convergence of the
SVM " and extend LSVM to the very large nonlin-
ear classification problems, an extended LSVM
(ELSVM) for classifications is presented.

1  Generalized decomposition algorithm for
SVM

In order to describe the problem clearly, some
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notations are introduced first. Let [ and n be the
number and dimension of the training data points re-
spectively. A data point is denoted by vector x in the
n-dimensional real space R”, x+ denotes the vector
in R" whose negative com ponents are set to zero. The
notation 4 € R” " signifies a real /X n matrix. A;
and A; denote the i-th row and j-th column of A4,
respectively. According to the membership of each
point A; in the class A+ or A—, the component d;; of
the /X [ diagonal matrix D is +1 or —1. A vector
with elements 1 in a real space of arbitrary dimension
is denoted by e. An identity matrix of arbitrary di-
mension is denoted by I. K and ¢ represent a nonlin-
ear kernel functional and the number of variables in
the working set, respectively.

Suppose the training data are
xi €R,yi €{+1,— 1))
An optimal ty pe hyperplane

w x)+b=0 (D
can be obtained by solving the follow ing optimal prob-

X1, 1)y -+ Oy yi)s

lem!”
l
i ) £y = 1 . £
(W’b’gfjﬂeﬁR#]+l (w, $) 2(w W)JFC,Z; ;
@)
s t.
vl w e xD+ b =1—8 i=12 -1
3)

where C is a regularization constant to control the
compromise between maximizing the margin and min-
imizing the number of training set errors, S; are some

nonnegative slack variables.

The dual of this optimization problem is
!

!
min W (a)= %E a0y 1 (X 2 ) Z; 4 (4

i i, j=1
s. t.
0<< o< G &)

!

2 ay;, = 0. 6)

i=1
Defining a matrix Q@ with components Q;;=yy; (x;°
x;), the QP problem (4) ~ (6) can be rewritten as

min W(a):LaTQa*eTa <
«ERY 2
s. t
a'y=0, (8)
0< o< C. )

For the nonlinear kernel classifier, the matrix @ is
defined by Q;=y ;K (xis x;), and the other formu-
lations are, not changed.

Decomposing « into two vectors ag and ay, fix-
ing av and allowing changes only in aB, the follow-
ing subproblem can be defined

min W( aB):%a;QBBaBJr aIrQNBaB
a« €RY
B

1 T T T
-+ S5 aNyONNON — epaB — eNaN

10

s. t.
az[s'yBJr OlzlvyN =0, an
0<< o5, << C. (12>

2
within the defined subproblem, the QP subproblem

can be rewritten as

T v
Because the term a yONN oy — eyay is a constant

. 1 T T T
min W (as) = 7 apQssas + ayQvsas — egas
a ER

B

(13)

s. t
agyB + a};lyN =0 (14)
O< ag,»é C. (15)

To select the working set, Joachims' ? proposes a
strategy based on Zoutendijk’ s method, which uses a
first-order approximation to the target function. The
idea is to find a steepest feasible direction d of de-
scent, which has only ¢ non-zero elements. The vari-
ables corresponding to these elements compose the
current working set. This approach leads to the fol-
lowing optimization problem:

mjn ¥V (d) = g ()" d (16
s. t.
T, _
y'd=o, an
di>0 for i: Oli:(), (18)
dl<0 for i: o — C, (19)

1<d; <1 and |{di:di#0) = ¢ QO
where g(a)= Qa—e, |{di: di70}| denotes the
number of the elements in the set { d;: d;70}.

2 Lagrangian
(LSVMD)

support vector machine

Using 2-norm instead of 1-norm in the optimal
formulation, Mangasarian et al.'¥ gave the following
reformulation of the SVM

) 1 grey Lor 1.2
(w.b.gller;e’*‘*’ > C + ) wwt 5 b- Q1)
s. t
DAw+eb)+ &> e. (22)

The dual of, this problem is
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0<a€r 2

min lal[é"— D(AA1+ eeT)D] a— eTa.

23)
Let
H=DlA —e|. 0= L5+HH". Qb
Then the dual problem (23) becomes
min +a" Qa— e a. 25
0< o€ R

Let Y= Qa— e. For the dual problem (25), the
KKT necessary and sufficient optimality conditions
are the follow ing

« Ly (a=0,v=0, 26)
where =0 and Y=0 mean that all of elements of
the vectors @ and 7 are nonnegative.

By using the easily established identity between
any two real numbers (or vectors), the optimality
conditions (26) can be written in the following equiv-
alent form for any positive 3

Qa—e= ((Qua— e)— Ba)+. Q7
These optimality conditions lead to the follow ing sim-
ple iterative scheme, which constitutes the LSVM al-
gorithm
= 0 e+ ((Qa'— &) — Ba)p),
i=01, - 28)
It should be noticed that the LSVM uses the Sher-

[ 10]

man-M orrison-Woodbury identity' ™, which enables

us to invert a large />< / matrix of the form in
—1 -1
[%—0— HHH =C I—H[CL—O— HTII‘LIj H‘]
Q9
by merely inverting a small (n+1)X (n+1) ma-

trix. In order to guarantee the global linear conver-
gence from any starting point, the follow ing condition

should be satisfied
2
0<< B<< C GO

3 Extended Lagrangian support vector ma-
chine (ELSVM)

The SVM"™" uses QP solver for QP subprob-

lems. The LSVM is comparable to or better than oth-
er SVM training algorithms for linear classifier and
small nonlinear one. But it cannot solve large nonlin-
ear problems. To take advantage of both the SVM'"¥™
and LSVM, the ELSVM for classifications is present-
ed in this section.

When the decomposition algorithm is applied to
the, QP problem . (23), one can obtain

min lal[ci"—l) (AAT—Q—eeT)D] a—eTa

Oi\faeRl 2

T
*lquL o' DAA TDaJr% o' Dee' Da— ¢ «

T2 C 2
. T
apap ANAN
= % BC % ]é + % Q;DBABA ;DB aB

+ a }DNANA;F;DBO(B JF% OLLDNANAKIDNOLN

-+ % azDBeBeEDB ap + O(TVDAENeEDB ap

1 T T T T
+ - anDyenenDyoay— egag — enay.

2
3D

-+ 5 o NDNANA xDxaw

T T T . -
a yDyeye y\Dnoy — e yay is a constant within the

Because the term

T
1 anan 1
2 C
2

defined subproblem, the subproblem can be rewritten
as

o 5Dz ApA5Dp

T
. 1 apaB
min N
KQBGRII 2 C

1
_'_2

+ % apDgesesDpos — (e — ayDyAvA;Dy

— OL;/DNeNe;DB )ag. (32)

Let
_ _ _ Iz T
HBfDB[AB eB], QB*C—'_HBHB'

(33)
Then the dual subproblem (32) becomes
min lOLEQBOLB—EEOLB, (34)
OiilaBERq 2
w here
Eg = eg— (XrgvDNANAgDB - G;DNeNegDB .
(35)

Therefore, Eq. (27) can be written as
QBOCB — Ep = ((QBO(B — Ep) — BO‘B)-F (36)
and then
o' = 0, (Es+ ((Qsah — Ez) — Boy)i).
(37

Let

Gp = | A3 — es],

1
Qs = &+ DsK (Gs Gy)Ds. (38)
For the nonlinear classifier, Es in the iterative for-

mulation (37) is in the following

T T T Ap
Ep = ep— oaxDNK|[ AN, — en], o' Ds.
B

39
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It should be noticed that the strategy selecting
sets B and N is almost the same as that adopted in
Sy M during each iteration. The only difference is
that in our algorithm, there are no equality con-
straints and upper boundary ones in solving the linear

programming problem for selecting sets B and N .

Under the assumption that @ is positive defi-
nite, Lin'® has proved that the algorithm of the
SVM"#" \as asymptotic convergent. In the proposed
algorithm, the assumption above is right. In the con-
vergent proof of Ref. [8], replacing Q. o, I, e
with Qs, ag Is, Es respectively, we could have
the same result:

Il Qsls ' — Qpag |l

< I 1z— B, Il = Il Qpoy— Qs Il
40
where aj is the solution of Eq. (37) and @z the u-
nique solution of Eq. (34). Tt shows that it is con-

vergent to solve the subproblem (34) via the iteration
formulation (37) at the linear rate.

4 Numerical implementation and comparison

The implementation of ELSVM is straightforward.

Our experiments were run on a PC, which utilizes a
Genuinelntel ~2000 MHz Pentium IV processor with
a maximum of 256 MB of memory available. In order
to test the speed and effectiveness of the presented al-
gorithm on the linear problem and nonlinear ones, we
apply SVM"#", LSVM, and ELSVM on the same
data sets available from the UCI M achine Learning
Repositoryl). All features for all experiments were
nommalized to the range [ — 1, + 1] . We chose to use

the default termination error criterion in SVM " of
0.001 and B= % The results for linear problems

and those for nonlinear ones are shown in Tables 1
and 2, respectively.

In the linear experiments as shown in Table 1,
all the data points are used. The results show that the
running time of ELSVM is shorter than that of
SVM 8" and longer than that of LSVM for linear
classification problems. Their training correctness is
almost the same. The reason is that many efforts are
spent in selecting the working set for SVM™" and
ELSVM, which takes some time, and LSVM is an
iterative method, which requires nothing more com-
plex than inversion of a single matrix with the dimen-
sion of input space plus one.

Table 1. Comparison of results training SVM!sht, ISVM and ELSVM for linear classification problems
SVM fih ELSVM LSVM
Data Size

c=110D X n Training Running Training Running T raining Running
accuracy (%) time accuracy (%) time accuracy (%) time (s)

lonosphere 351X 34 83.23 0.610 77. 85 0.110 78.48 0.01

Liver Disorders 345X 6 70.72 50. 963 68. 41 3.254 68.99 0.02

Pima Diabetes 768X 8 76. 17 297. 037 71.61 84. 544 69. 92 0. 04

Tic-Tac Toe Endgame 958X 9 65. 66 0.911 65. 66 0. 451 65. 66 0.03

KRKPA7 3196X 36 81. 15 6.339 84. 46 3.975 84. 49 0.12

In the nonlinear experiments, the strategy of the
tenfold cross validation is used in order to compare
testing accuracy between the methodologies and the
results are average value of 10 implements. 90% of
all the data points were selected randomly for training
and the remainings w ere used for testing. From Table
2, it can be seen that ELSVM is faster than SVM"¢™
and LSVM cannot work for large nonlinear classifica-
tion problems. In our algorithm, the QP subproblem
is solved by LSVM and LSVM is faster than the reg-

ular QP solver for small and medium nonlinear classi-
fication problems. Therefores ELSVM is faster than
SVM B!,

nel, a single matrix inversion is required in the space

For a positive semidefinite nonlinear ker-

of dimension equal to the number of data points classi-
fied. Hence, LSVM cannot handle large nonlinear
problems.

1) Murphy, P. M. et al. UCI repository of machine learning databases. 1992, Available at http: // www. ics. uci. edw/ ~ mlearn/ M LRepository.

html
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Table 2. Comparison of results training SVM %, T1SVM and ELSVM

for nonlinear classification problems

Data Kerne Training Testing Running
(C=1/1D Algorithm type accuracy accuracy  time
X'n . (¢Z9) (¢Z9) (s)
lonosphere Sy Mgt Linear 83.23  94.29 0.610
351X 34 Quadratic 94.62  94.29 1. 963
LSVM Linear 78.48  82.86 0.010
Quadratic 95.55 91.43 0.291
ELSVM  Linear 77.85  82.86 0.110
Quadratic 95.25 94.29 0.331
TicTac-Toe Sy Migt Linear 65.66  62.50 0.911
Endgame Quadratic 75.64  75.00 5. 067
958X 9 LSVM Linear 65.66  62.50 0. 030
Quadratic 75.87  75.00 3.535
ELSVM  Linear 65.66  62.50 0.451
Quadratic 75.99  73.96 5.038
KRKPA7  SVM'"  Linear 81.15 84.06  6.339
3196X 36 Quadratic 92.90 91.56 28.281
LSVM Linear 84.49  85.31 0. 120
Quadratic — — —
ELSVM  Linear 84.46  83.75 3.975
Quadratic 95.00 95.83 12.097
Chess KRK SyMmlight  Linear 70.79  71.19 31.074
14001X 6 RBF(c=100) 70.97 71.24 293.672
LSVM Linear — — —
RBF (6= 100) — — -
ELSVM  Linear 70.77  71.23  23.681

RBF(o=100) 70.97 71.24 197.317

5 Conclusions

In this paper, an ELSVM for classification de-
sign is presented. The ELSVM is based on both
SVM"#" and LSVM and is easy to implement. In or-
der to test the speed and effectiveness of ELSVM, six

UCI data sets are tested. Simulation results show
that ELSVM is faster than SVM"" for linear and
large nonlinear classification problems. Numerical ex-
periments also show that the LSVM is faster than
ELSVM for linear classification problems, but for the
large nonlinear classification problems, the LSVM
fails to work. ELSVM extends the LSVM to very
large data sets for nonlinear kernel classifications.
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