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　　Abstract　　Lagrangian support vector machine(LSVM)cannot solve large problems for nonlinear kernel classif iers.In order to ex-
t end the LS VM to solve very large problems , an extended Lag rangian support vector machine (E LSVM)f or classifications based on

LS VM and SVM lig ht is presented in this paper.Our idea for the E LS VM is to divide a large quadratic prog ramming problem into a series

of subproblems wi th small size and to solve them via LSVM.Since the LS VM can solve small and medium problems for nonlinear kernel

classifiers , the p roposed ELSVM can be used to handle large problems very effi cient ly.Numerical experiments on dif ferent types of prob-

lem s are performed to demonstrate the high ef ficiency of the ELSVM.

　　Keywords:　quadratic programming , support vector machine , decomposition algorithm , LSVM , ELSVM.

　　Training a support vector machine (SVM)is e-
quivalent to solving a linearly const rained quadratic

prog ramming (QP)problem w ith a number of vari-
ables equal to the number of data points.This opti-
mization problem is know n to be challenging w hen

the number of data points exceeds a few thousand.
Decomposition algorithms are currently the majo r

methods for solving support vecto r machines.An im-
po rtant issue in the solution process is the select ion of

the wo rking set , and ano ther one is solving the

quadratic programming problem.

In the previous wo rk , Osuna et al.
[ 1]

presented

a decomposition algorithm and transformed the origi-
nal quadratic programming into a series of quadratic

prog ramming subproblems.From the view of select-
ing the wo rking set , Joachims

[ 2]
proposed an imple-

mentation of the decom posit ion algori thm based on O-
suna' s idea , w hich is called SVM lig ht.Plat t[ 3] has al-
so given a sequent ial minimal optimization(SMO)al-
go rithm that breaks the large QP problem s into a se-
ries of smallest possible QP subproblems , w hich can

be solved analy tically.Keerthi et al.[ 4] suggested

some improvements to Platt ' s SMO algori thm fo r

SVM classifier design.In o rder to improve the speed

of SVM training without sacrificing the generality

performance , Yang et al.
[ 5]

presented a preprocessing

method based on the set segmentation and k-means

clustering.As for the convergence of the decomposi-
tion alg orithm for support vector machines , Lin

[ 6 ,7]

has given the proofs in detail.

In the decomposition algo rithms mentioned

above , the matrix that appeared in the dual objective

function is no t positive definite in general.In order to

overcome this difficulty , M angasarian et al.[ 8] pro-
posed the Lagrangian support vector machine

(LSVM).For a positive semidefinite nonlinear ker-
nel , a single matrix inversion is required in the space

of dimension equal to the number of data points classi-
fied.Hence , the LSVM cannot handle very large

nonlinear classificat ion problem s ef ficiently.In this

paper , in o rder to speed up the convergence of the

SVM lig ht and extend LSVM to the very large nonlin-
ear classification problems , an extended LSVM

(ELSVM)fo r classifications is presented.

1 　Generalized decomposition algorithm for
SVM

In order to describe the problem clearly , some



notations are introduced f irst.Let l and n be the

number and dimension of the t raining data points , re-
spectively .A data point is denoted by vector x in the

n-dimensional real space R
n
, x+ denotes the vecto r

in R
n w hose negative com ponents are set to zero.The

notation A ∈ R
l×n signifies a real l ×n matrix.Ai

and A j denote the i-th row and j-th column of A ,
respectively.According to the membership of each

point Ai in the class A+or A- , the component d ii of

the l×l diagonal matrix D is +1 or -1.A vecto r

w ith elements 1 in a real space of arbit rary dimension

is deno ted by e.An identity matrix of arbit rary di-
mension is denoted by I.K and q represent a nonlin-
ear kernel functional and the number of variables in

the w orking set , respectively.

Suppose the training data are

(x1 , y 1), … ,(x l , yl), (xi ∈ R
n
, yi ∈ {+1 , -1}).

An optimal type hyperplane

(w ·x)+b =0 (1)
can be obtained by solving the follow ing optimal prob-
lem[ 9]

min
(w , b , ξ

i
)∈ R

n+1+l
Υ(w , ξ)=

1
2
(w·w)+C ∑

l

i=1
ξi

(2)
s.t.

y i[(w ·x i)+b] ≥1 -ξi , 　i =1 ,2 , …, l ,

(3)
w here C is a regularization constant to control the

compromise between maximizing the margin and min-
imizing the number of training set errors , ξi are some

nonnegative slack variables.

The dual of this opt imization problem is

　min
α
i
∈ R

W(α)=
1
2 ∑

l

i , j=1

αiαjy iyj(x i·xj)-∑
l

i=1

αi (4)

s.t.
0 ≤αi ≤C , (5)

∑
l

i=1
αiy i =0. (6)

Defining a matrix Q with components Qij =yiyj(x i·
x j), the QP problem (4)～ (6)can be rew rit ten as

min
α∈Rq

W(α)=
1
2
α

T
Qα-e

T
α (7)

s.t.
αT
y =0 , (8)

0 ≤αi ≤C. (9)

For the nonlinear kernel classifier , the m atrix Q is

defined by Qij=y iyjK(xi , x j), and the other formu-
lations are not changed.

Decomposing αinto tw o vectors αB and αN , fix-
ing αN and allowing changes only in αB , the follow-
ing subproblem can be defined

min
α
B
∈ R

q
W(αB)=

1
2 α

T
BQBBαB +α

T
NQNBαB

+
1
2 α

T
NQNNαN -e

T
BαB -e

T
NαN

(10)
s.t.

α
T
ByB +α

T
NyN =0 , (11)

0 ≤αBi ≤C. (12)

Because the term
1
2
α

T
NQNNαN -e

T
NαN is a constant

w ithin the defined subproblem , the QP subproblem

can be rew ri tten as

min
α
B
∈Rq

W(αB)=
1
2 α

T
BQBBαB +α

T
NQNBαB -e

T
BαB

(13)
s.t.

α
T
ByB +α

T
NyN =0 , (14)

0 ≤αBi ≤C. (15)

To select the w orking set , Joachim s[ 2] proposes a

st rategy based on Zoutendijk' s method , w hich uses a

fi rst-order approximation to the target function.The

idea is to find a steepest feasible direction d of de-
scent , which has only q non-zero elements.The vari-
ables corresponding to these elements compose the

current w orking set.This approach leads to the fol-
low ing optimization problem:

min
d

V(d)=g(α)
T
d (16)

s.t.
y

T
d =0 , (17)

d i ≥0　for　i:αi =0 , (18)
d i ≤0　for　i:αi =C , (19)

1 ≤d i ≤1　and　|{d i:d i ≠0}|= q ,(20)
w here g(α)=Qα-e ,  {d i:d i ≠0} denotes the

number of the elements in the set{d i:d i≠0}.

2 　 Lagrangian support vector machine

(LSVM)

Using 2-norm instead of 1-norm in the optimal

fo rmulation , Mangasarian et al.[ 8] gave the following

reformulation of the SVM

min
(w , b , ξ)∈ R

n+1+l

1
2
CξTξ+

1
2
w

T
w +

1
2
b

2 (21)

s.t.
D(Aw +eb)+ξ> e. (22)

The dual of this problem is
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min
0≤α∈Rl

1
2
αT I

C
+D(AAT +ee

T)D α-e Tα.

(23)
Let

H =D[ A　-e] , 　Q =
I
C
+HH

T
.(24)

Then the dual problem (23)becomes

min
0≤α∈ R

l

1
2
αT
Qα-e

T α. (25)

Let γ=Qα-e.For the dual problem (25), the

KK T necessary and suf ficient optimality conditions

are the follow ing

α⊥γ　(α≥0 , γ≥0), (26)
w here α≥0 and γ≥0 mean that all of elements of

the vectors αand γare nonnegative.

By using the easily established identity betw een

any tw o real numbers (or vectors), the optim ality

conditions(26)can be w rit ten in the following equiv-
alent form for any positive β

Qα-e =((Qα-e)-βα)+. (27)
These optimality conditions lead to the follow ing sim-
ple iterative scheme , w hich constitutes the LSVM al-
go rithm

αi+1 = Q
-1(e +((Qαi -e)-βαi)+),

i =0 ,1 , …, (28)
It should be no ticed that the LSVM uses the Sher-
man-M orrison-Woodbury identity[ 10] , w hich enables

us to invert a large l×l matrix of the form in

I
C
+HH

T
-1

=C I -H
I
C
+H

T
H

-1

H
T

(29)
by merely inverting a sm all(n +1)×(n +1)m a-
trix .In order to guarantee the global linear conver-
gence f rom any starting point , the follow ing condition

should be satisfied

0 < β <
2
C
. (30)

3　Extended Lagrangian support vector ma-
chine(ELSVM)

The SVM
light

uses QP solver for QP subprob-
lem s.The LSVM is comparable to or bet ter than oth-
er SVM training algorithms for linear classifier and

sm all nonlinear one.But i t cannot solve large nonlin-
ear problems.To take advantage of both the SVM lig ht

and LSVM , the ELSVM for classifications is present-
ed in this section.

When the decomposition algo rithm is applied to

the QP problem (23), one can obtain

min
0≤α∈ R

l

1
2
αT I

C
+D(AAT +ee T)D α-e Tα

　=
1
2
αT α
C
+

1
2 α

T
DAA

T
Dα+

1
2 α

T
Dee

T
Dα-e

T
α

　=
1
2

α
T
BαB
C
+

1
2

α
T
NαN
C
+

1
2 α

T
BDBABA

T
BDBαB

　　+α
T
NDNANA

T
BDBαB +

1
2
α

T
NDNANA

T
NDNαN

　　+
1
2
α

T
BDBeBe

T
BDBαB +α

T
NDNeNe

T
BDBαB

　　+
1
2
α

T
NDNeNe

T
NDNαN -e

T
BαB -e

T
NαN .

(31)

Because the term
1
2

α
T
NαN
C
+

1
2
α

T
NDNANA

T
NDNαN +

1
2
α

T
NDNeNe

T
NDNαN -e

T
NαN is a constant w ithin the

defined subproblem , the subproblem can be rew rit ten

as

min
0≤α

B
∈ R

q

1
2

α
T
BαB
C
+

1
2
α

T
BDBABA

T
BDBαB

　　+
1
2
α

T
BDBeBe

T
BDBαB -(e

T
B -α

T
NDNANA

T
BDB

　　-α
T
NDNeNe

T
BDB)αB . (32)

Let

HB =DB[ AB 　-eB] , 　QB =
IB
C
+HBH

T
B .

(33)
Then the dual subproblem (32)becomes

min
0≤α

B
∈Rq

1
2
α

T
BQBαB -E

T
BαB , (34)

w here

E
T
B = e

T
B -α

T
NDNANA

T
BDB -α

T
NDNeNe

T
BDB .

(35)
Therefore , Eq.(27)can be w ritten as

QBαB -EB =((QBαB -EB)-βαB)+ (36)
and then

α
i+1
B =Q

-1
B (EB +((QBα

i
B -EB)-βα

i
B)+).

(37)

　　Let

GB =[ AB　-eB] ,

QB =
IB
C
+DBK(GB , G

T
B)DB . (38)

For the nonlinear classifier , EB in the iterative for-
mulation(37)is in the following

E
T
B = e

T
B -α

T
NDNK [ AN , -eN ] ,

A
T
B

e
T
B

DB.

(39)
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　　It should be no ticed that the st rategy selecting

sets B and N is almost the same as that adopted in

SVM
light

during each iteration.The only dif ference is

that in our algorithm , there are no equality con-
st raints and upper boundary ones in solving the linear

prog ramming problem for selecting sets B and N .

Under the assum ption that Q is posi tive defi-
nite , Lin[ 6] has proved that the algorithm of the

SVM light w as asymptotic convergent.In the proposed

algori thm , the assumption above is right.In the con-
vergent proof of Ref.[ 8] , replacing Q , αi , I , e

w ith QB , α
i
B , IB , EB respectively , we could have

the same result:

‖QBα
i+1
B -QB αB ‖

　　≤‖ IB -βQ
-1
B ‖ · ‖QBα

i
B -QB αB ‖ ,

(40)

w here α
i
B is the solut ion of Eq.(37)and  αB the u-

nique solution of Eq.(34).It show s that it is con-
vergent to solve the subproblem (34)via the i teration

formulat ion (37)at the linear rate.

　　1)Murphy , P.M .et al.UC I repository of machine learning databases.1992 , Available at ht tp:// w ww.ics.uci.edu/ ～ mlearn/MLRepository.
h tml

4　Numerical implementation and comparison

The implementation of ELSVM is st raightforward.

Our experiments were run on a PC , w hich utilizes a

GenuineIntel ～ 2000 MHz Pentium IV processo r w ith

a maximum of 256 MB of memory available.In o rder

to test the speed and effectiveness of the presented al-
gori thm on the linear problem and nonlinear ones , we

apply SVM light , LSVM , and ELSVM on the same

data sets available f rom the UC I M achine Learning

Reposi tory 1).All features fo r all experiments w ere

no rmalized to the range [ -1 , +1] .We chose to use

the default termination error criterion in SVM light of

0.001 and β =
1.9
C
.The results fo r linear problems

and those for nonlinear ones are show n in Tables 1

and 2 , respectively.

In the linear experiments as show n in Table 1 ,
all the data points are used.The results show that the

running time of ELSVM is sho rter than that of

SVM lig ht and longer than that of LSVM for linear

classification problems.Their training correctness is

almost the same.The reason is that many ef forts are

spent in selecting the w orking set for SVM
lig ht

and

ELSVM , w hich takes some time , and LSVM is an

iterat ive method , w hich requires nothing more com-
plex than inversion of a single matrix w ith the dimen-
sion of input space plus one.

Table 1.　C omparison of result s t raining SVM l ight , LS VM and ELSVM for linear classif icat ion problems

Data

(C=1/ l)
Size

l×n

S VM lig ht ELS VM LS VM

Training

accuracy (%)
Running

time

Training

accuracy (%)
Running

time

T raining

accuracy(%)
Running

time(s)

Ionosphere 351×34 83.23 　0.610 77.85 　0.110 78.48 0.01

Liver Disorders 345×6 70.72 50.963 68.41 3.254 68.99 0.02

Pima Diabetes 768×8 76.17 297.037 71.61 84.544 69.92 0.04

Tic-Tac-Toe Endgame 958×9 65.66 0.911 65.66 0.451 65.66 0.03

KRKPA7 3196×36 81.15 6.339 84.46 3.975 84.49 0.12

　　In the nonlinear experiments , the strategy of the

tenfold cross validation is used in order to compare

testing accuracy between the methodologies and the

results are average value of 10 implements.90% of

all the data points w ere selected randomly for t raining

and the remaining s w ere used for test ing.From Table

2 , i t can be seen that ELSVM is faster than SVM lig ht

and LSVM cannot w ork for large nonlinear classifica-
tion problem s.In our algori thm , the QP subproblem

is solved by LSVM and LSVM is faster than the reg-

ular QP solver fo r small and medium nonlinear classi-
fication problems.Therefore , ELSVM is faster than

SVM lig ht.For a positive semidefinite nonlinear ker-
nel , a single matrix inversion is required in the space

of dimension equal to the number of data points classi-
fied.Hence , LSVM cannot handle large nonlinear

problems.
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Table 2.　Comparison of result s t raining S VM lig ht , LSVM and ELSVM

for nonlinear classification problems

Data

(C=1/ l)
l×n

Algori thm
Kernel

type

Training

accuracy

(%)

Testing

accuracy

(%)

Running

t ime

(s)

Ionosphere SVM light Linear 83.23 94.29 0.610

351×34 Quadratic 94.62 94.29 1.963

LSVM Linear 78.48 82.86 0.010

Quadratic 95.55 91.43 0.291

ELSVM Linear 77.85 82.86 0.110

Quadratic 95.25 94.29 0.331

Tic-Tac-Toe SVM light Linear 65.66 62.50 0.911

Endgame Quadratic 75.64 75.00 5.067

958×9 LSVM Linear 65.66 62.50 0.030

Quadratic 75.87 75.00 3.535

ELSVM Linear 65.66 62.50 0.451

Quadratic 75.99 73.96 5.038

KRKPA7 SVM light Linear 81.15 84.06 6.339

3196×36 Quadratic 92.90 91.56 28.281

LSVM Linear 84.49 85.31 0.120

Quadratic — — 　 —

ELSVM Linear 84.46 83.75 3.975

Quadratic 95.00 95.83 12.097

Chess-KRK SVM light Linear 70.79 71.19 31.074

14001×6 RBF(σ=100) 70.97 71.24 293.672

LSVM Linear — — 　 —

RBF(σ=100) — — 　 —

ELSVM Linear 70.77 71.23 23.681

RBF(σ=100) 70.97 71.24 197.317

5　Conclusions

In this paper , an ELSVM for classif ication de-
sign is presented.The ELSVM is based on both

SVM light and LSVM and is easy to implement.In or-
der to test the speed and effectiveness of ELSVM , six

UCI data sets are tested.Simulation results show

that ELSVM is faster than SVM light for linear and

large nonlinear classification problems.Numerical ex-
periments also show that the LSVM is faster than

ELSVM for linear classif ication problems , but for the

large nonlinear classification problems , the LSVM

fails to wo rk.ELSVM extends the LSVM to very

large data sets for nonlinear kernel classifications.
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